THIRD CONFERENGE OF WORLD ASSOCIATION FOR SOIL AND WATER CONSERVATION

Soil CO_{2} emissions under different slope gradients and positions in semiarid Loess Plateau of China

Shengli Guo, Zhiqi Wang, Rui Wang,Yaxian Hu

Institute of Soil and Water Conservation, CAS and MWR

Northwest Agriculture and Forestry University

Background

Soil CO_{2} emissions, as a linkage, can have significant effects both on the atmospheric CO_{2} concentration and soil organic carbon stock.

Substantial research dedicated to soil CO_{2} emissions, but mostly on flat field. Nearly no investigation on $\mathbf{C O}_{2}$ emissions on sloping land.

More than 60% of the global land areas are slopes of gradients > $\mathbf{8}^{\circ}$.

Variations in slope steepness potentially affect soil water and heat distribution, change soil properties and vegetation growth, which all possibly influence soil CO_{2} emissions.

(Kirkels et al., Geomorphology, 2014, 226, 94-105)

Background

> The knowledge of the effect of slope land on soil CO_{2} emissions is essential for a better understanding of the global atmospheric CO_{2} budget and climate change.

While generally regulated by soil moisture, SOC and fine root biomass, CO_{2} emissions in sloping land are particularly affected by their spatial distribution on different slope gradients and positions.

Soil moisture significantly lower than on plains, mostly because of the increase of runoff loss and a corresponding reduction in infiltration;

Soil moisture can also be spatially different along the slope.
SOC, as the main substrate for microbial organism, can also differ spatially along slopes due to selective or non-selective erosion effects.

Background

Objectives

In this study:

the magnitude of CO_{2} emissions at different slope gradients were related to erosion induced variations of water, crop growth and SOC across slope gradients and positions.

With the aim to investigate:

1) to compare the differences of CO_{2} emissions across slope gradients and positions;
2) to evaluate the potential effects of slope differentiated water, crop growth and SOC on CO_{2} emissions at an eroded slope.

Material \& Methods - Exp. Design

Six slope gradients:	
$\cdot 0.5^{\circ}$	$\left(\mathrm{S}_{0.5}\right)$
$\cdot 1^{\circ}$	$\left(\mathrm{S}_{1}\right)$
$\cdot 3^{\circ}$	$\left(\mathrm{S}_{3}\right)$
$\cdot 5^{\circ}$	$\left(\mathrm{S}_{5}\right)$
$\cdot 10^{\circ}$	$\left(\mathrm{S}_{10}\right)$
$\cdot 20^{\circ}$	$\left(\mathrm{S}_{20}\right)$

Results - soil CO_{2} emission rates from six slopes

- Temporal variations over seasons
- Soil CO_{2} emission rates decreased with slope gradients

Results - soil annual CO_{2} emissions from six slopes

Results - soil CO_{2} emissions on three slope positions

Upper < Middle < Bottom

Results - soil CO_{2} emissions and soil moisture

More runoff, thus less water on steeper slopes

- Soil annual CO_{2} emissions linearly increased with soil moisture
- Soil water differentiated among six slopes, and also spatially redistributed across three slope positions

Water tends to accumulate at lower positions

Results - soil CO_{2} emissions and SOC redistribution

- Soil annual CO_{2} emissions exponentially decreased with SOC loss
- SOC loss differentiated among six slopes, and also spatially redistributed across three slope positions

More runoff, thus more SOC loss on steeper slopes

Results - soil CO_{2} emissions and root biomass

Greater root biomass at lower positions, potentially contributing higher CO_{2} emissions

Implications - Slope index?

On the sloping land, differences in soil CO_{2} emissions related to soil water, SOC and root biomass, which resulted from runoff, SOC loss by sediments, and crop growth.

1) Clearly, y_{0} means the minimum soil CO_{2} emissions. That is to say, even at extremely steep slope, any soils would still have a minimum soil CO 2 emission.
2) Technically, by changing α and β, clearly see what they really mean.

Implications - Slope index?

Does this mean, we somehow find a slope coefficient? For each soil, is it possible to have a certain slope coefficient, such as β, to estimate its potential CO 2 emissions?

While limited by many other factors, such as soil water, temperature and vegetation, our results still cast a new light into CO 2 emissions on sloping land. They are definitely not the same as on flat land. They certainly have something to do with the slope gradients!
3) When α changes from 200 to $800, \mathrm{CO} 2$ emissions shift up and down, without changing the shape. That may suggest, for the same erosion events, inherent soil properties may decide the maximum potential of soil CO2 emissions at different slope gradients.
4) When β changes from 0.15 to 0.60 , the maximum and minimum of CO 2 emissions does not change, but the decreasing rate of CO 2 emissions are much greater. This may imply, for the same soil, erosion amounts or soil loss may decide the sensitivity of soil CO2 emissions at every unit increase of slope gradient.

Thank you for the attention!

Shengli Gut: slguo@ms.iswe.ae.en

Institute of Soil and Water Conservation, CAS and MWR

Northwest A\&F University

Acknowledgements

This work is supported by NSFC (No. 41371279), and the "Strategic Priority Research
Program-Climate Change: Carbon Budget and Related Issues" of the Chinese Academy of Sciences (Grant No. XDA05050504).

